metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊4S3, C23.30D6, (C2×C6)⋊8D4, C3⋊3C22≀C2, (C23×C6)⋊3C2, C6.63(C2×D4), C22⋊4(C3⋊D4), (C2×C6).61C23, C6.D4⋊13C2, (C22×S3)⋊2C22, (C2×Dic3)⋊3C22, C22.66(C22×S3), (C22×C6).42C22, (C2×C3⋊D4)⋊8C2, C2.26(C2×C3⋊D4), SmallGroup(96,160)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊4S3
G = < a,b,c,d,e,f | a2=b2=c2=d2=e3=f2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 290 in 130 conjugacy classes, 41 normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, Dic3, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22×C6, C22≀C2, C6.D4, C2×C3⋊D4, C23×C6, C24⋊4S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, C2×C3⋊D4, C24⋊4S3
Character table of C24⋊4S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 2 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | √-3 | -√-3 | 1 | -√-3 | √-3 | -√-3 | 1 | 1 | √-3 | -1 | -1 | 1 | √-3 | -√-3 | -1 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | √-3 | -√-3 | √-3 | -√-3 | -√-3 | √-3 | -1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | √-3 | -√-3 | 1 | -√-3 | √-3 | √-3 | -1 | -1 | -√-3 | 1 | 1 | 1 | -√-3 | √-3 | -1 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | √-3 | -√-3 | -1 | √-3 | -√-3 | -1 | √-3 | -√-3 | -1 | -√-3 | √-3 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | √-3 | √-3 | -√-3 | -√-3 | √-3 | -√-3 | -1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -√-3 | √-3 | -1 | -√-3 | √-3 | -1 | -√-3 | √-3 | -1 | √-3 | -√-3 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ25 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | √-3 | -√-3 | -1 | √-3 | -√-3 | 1 | -√-3 | √-3 | 1 | √-3 | -√-3 | 1 | -1 | -1 | 1 | complex lifted from C3⋊D4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | -√-3 | -√-3 | √-3 | √-3 | -√-3 | √-3 | -1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ27 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -√-3 | √-3 | -1 | -√-3 | √-3 | 1 | √-3 | -√-3 | 1 | -√-3 | √-3 | 1 | -1 | -1 | 1 | complex lifted from C3⋊D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | -√-3 | √-3 | 1 | √-3 | -√-3 | -√-3 | -1 | -1 | √-3 | 1 | 1 | 1 | √-3 | -√-3 | -1 | complex lifted from C3⋊D4 |
ρ29 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -√-3 | √-3 | -√-3 | √-3 | √-3 | -√-3 | -1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ30 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | -√-3 | √-3 | 1 | √-3 | -√-3 | √-3 | 1 | 1 | -√-3 | -1 | -1 | 1 | -√-3 | √-3 | -1 | complex lifted from C3⋊D4 |
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 14)(2 13)(3 15)(4 17)(5 16)(6 18)(7 20)(8 19)(9 21)(10 23)(11 22)(12 24)
G:=sub<Sym(24)| (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,14)(2,13)(3,15)(4,17)(5,16)(6,18)(7,20)(8,19)(9,21)(10,23)(11,22)(12,24)>;
G:=Group( (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,14)(2,13)(3,15)(4,17)(5,16)(6,18)(7,20)(8,19)(9,21)(10,23)(11,22)(12,24) );
G=PermutationGroup([[(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,14),(2,13),(3,15),(4,17),(5,16),(6,18),(7,20),(8,19),(9,21),(10,23),(11,22),(12,24)]])
G:=TransitiveGroup(24,116);
C24⋊4S3 is a maximal subgroup of
C24⋊6D6 C24.38D6 C24.41D6 C24.42D6 C24.67D6 S3×C22≀C2 C24⋊7D6 C24.45D6 C24.46D6 C24⋊9D6 C24.47D6 C24.83D6 D4×C3⋊D4 C24⋊12D6 C24.52D6 C24.53D6 C24⋊4D9 C23.D18 (C22×S3)⋊A4 C62⋊4D4 C62⋊5D4 C62⋊24D4 C24⋊D9 (C2×C6)⋊4S4 (C2×C6)⋊S4 (C2×C30)⋊D4 (C2×C6)⋊8D20 C24⋊5D15 C24⋊D15
C24⋊4S3 is a maximal quotient of
C24.73D6 C24.76D6 (C2×C6)⋊8D8 (C3×D4).31D4 C24.31D6 C24.32D6 (C3×Q8)⋊13D4 (C2×C6)⋊8Q16 C22.52(S3×Q8) (C22×Q8)⋊9S3 (C3×D4)⋊14D4 (C3×D4).32D4 2+ 1+4⋊6S3 2+ 1+4.4S3 2+ 1+4.5S3 2+ 1+4⋊7S3 2- 1+4⋊4S3 2- 1+4.2S3 C25.4S3 C24⋊4D9 C62⋊4D4 C62⋊5D4 C62⋊24D4 (C2×C30)⋊D4 (C2×C6)⋊8D20 C24⋊5D15
Matrix representation of C24⋊4S3 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
9 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 9 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,1],[1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[9,0,0,0,0,3,0,0,0,0,3,0,0,0,0,9],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C24⋊4S3 in GAP, Magma, Sage, TeX
C_2^4\rtimes_4S_3
% in TeX
G:=Group("C2^4:4S3");
// GroupNames label
G:=SmallGroup(96,160);
// by ID
G=gap.SmallGroup(96,160);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,218,2309]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export